المادة: هندسة

الزمن: ساعتان

امتحان الفصل الدراسي الأول

الصف الأول الثانوي ٢٠٠٩ – ٢٠١٠

إدارة شرق الزقازيق التعليمية

مدرسة الزقازيق الثانوية بنين

(١) أكمل ما يأتى:

أ- معادلة المستقيم الذي يوازي محور السينات ويمر بالنقطة (١٠ ، ٣) هي

- العمودي بين المستقيمين س - - - - ، س + + - . يساوى

= قياس الزاوية المحصورة بين المستقيم ص= س والاتجاه الموجب لمحور السينات

.....

د- إذا كان أ = (-7 ، ٤) ، + = (-7) فإن محور السينات يقسم أ - بنسبة : من الداخل

(٢) أ- إذا كان المستقيم ٢س + أص - ١٠ = ٠ يمر بالنقطة (\cdot ، ٢) أوجد قيمة أ ، ومساحة المثلث الذي يصنعه المستقيم مع محورى الإحداثيات.

ب- أوجد النسبة التي تتقسم بها القطعة أب بالنقطة جـ (س، ٠) حيث أ (١، ٣)، ب (-٢، -٤) مبيناً نوع التقسيم ثم أوجد قيمة س.

- (7) أ- ليكن ل, المار بالنقطتين (۸ ، ٤) ، (۲ ، -۲) ل، : س + ص = ، عين قياس الزاوية بين ل، ، ل،
- - ا = ۰ ، ۲ س ص ۱ = ۰ ، ۲ س ص ۱ = ۰ ، ۲ س ويوازى المستقيم ٢ س ٣ س + ٠ = ٠ ويوازى المستقيم ٢ س ٣ س + ١ = ٠
 - (٤) اثبت أن النقط أ (٣ ، ٢) ، ب (٤ ، ٥) ، جـ (٢ ، ١) تقع على استقامة و احدة ثم أوجد معادلة المستقيم $\stackrel{\longleftarrow}{+}$ وحقق أن نقطة أ تتتمى للمستقيم $\stackrel{\longleftarrow}{+}$

ب- أوجد مساحة الدائرة التي مركزها م (۱ ، ۲) و المستقيم الذي معادلته ٦س + ٨ص - ٢ = \cdot مماس للدائرة.

المادة : هندسة

امتحان الفصل الدراسي الأول

الزمن: ساعتان

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

إدارة شرق الزقازيق التعليمية

مدرسة الزقازيق الثانوية بنين

(١) أكمل ما يأتى:

أ- قياس الزاوية بين المستقيمين س + ١ = ٠ ، ص - - - هو

- طول العمود المرسوم من النقطة (۲ ، ۱) على المستقيم -س + ٤ص + ٥ = ٠ هو

جــ معادلة المستقيم المار بالنقطة (-7، \circ) وعمود على محور السينات هي

د- المستقيم الذي معادلته = ٣ يصنع مع محور الإحداثيات مثلثا مساحته

(٢) أ- إذا كانت أ = (٢ ، ٦) ، = (-7 , -6) أوجد النسبة التى يقسم بها محور السينات أ ب مبينا نوع التقسيم.

- ب - ب - 2 - ، س - 2 - ، س - 2 - . - 0 - 1 - 0 - 2 - 0 - 2 - 0 - 2 - 0 - 2 - 0 - 2 - 0

 $\frac{d}{2}$ بساوی $\frac{d}{2}$ بساوی $\frac{d}{2}$ با کان قیاس الز اویة بین المستقیمین س + ك ص $\frac{d}{2}$ ، ۲س $\frac{d}{2}$ و بساوی $\frac{d}{2}$ فأو جد قیمة ك.

(3) أ- أوجد قيمة ك التي تجعل المستقيم $\frac{w}{Y} + \frac{\omega}{Y} + \frac{\omega}{Y}$ 1 يو ازى المستقيم ل w + 3 ص = ٥

- أوجد طول نصف قطر الدائرة التي مركزها ($^{\circ}$ ، $^{\circ}$) ويمسها المستقيم $^{\circ}$ ، $^{\circ}$ $^{\circ}$ $^{\circ}$. $^{\circ}$ $^{\circ}$ $^{\circ}$. $^{\circ}$ $^$

المادة : هندسة

الزمن: ساعتان

امتحان الفصل الدراسي الأول

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

إدارة شرق الزقازيق التعليمية

مدرسة الزقازيق الثانوية بنين

(١) أكمل ما يأتى:

أ- المستقيم الذي يصنع زاوية قياسها $^{\circ}$ 10 مع الاتجاه السالب لمحور السينات يكون ميله $^{\circ}$

ب- المستقيمان س - = ، ، ص = ٥ يحصران بينهما زاوية قياسها

= إذا كانت (أ، ١) \in للمستقيم أس + ٣ ص = ١٢ فإن أ =

د- المستقيم الذى معادلته π س - 3 ص = 17 يقطع جزءا من محور السينات طوله وجزءا من محور الصادات طوله

هــ - مستقيم ميله = -٢ ويمر بالنقطتين (١ ، ٢) ، (٣ - ك + ١) فإن ك =

(۲) أ- أوجد النسبة التى يقسم بها محور الصادات القطعة أب حيث أ = (۲،۳) ب = (۳،۷) مبينا نوع التقسيم.

- إذا كانت أ = (۲ ، ٥) ، - ب = (٥ ، ۲) ، ج = (٤ ، ص) على استقامة و احدة أو جد قيمة ص.

(٣) أ- إذا كان قياس الزاوية بين المستقيمين س + ك ص – ٦ = . $\frac{d}{d}$. \frac{d}

(٤) أ- أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين

 γ + ص = ٥ ، س – ص = ۱ وبالنقطة (٥،٣)

ب- أوجد معادلتى المستقيمين اللذين يمر كل منهما بالنقطة (٣،٠) ويصنع مع محورى الاحداثيات مثلثا مساحة سطحه ١٥ وحدة مربعة.

المادة: هندسة تحليلة

امتحان الفصل الدراسى الأول

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

إدارة شرق الزقازيق التعليمية مدرسة الزقازيق الثانوية بنين

الزمن:

(١) اختر الإجابة الصحيحة مما بين القوسين:

- -1 الخط المستقيم -7 س -7 س +17 = ، يقطع محور الصادات في النقطة
- [(۲،۰) أو (۲،۰) أو (۲،۰) أو (۲،۰)]
- γ المستقيم الذي ميله $\frac{\gamma}{\gamma}$ ويمر بالنقطة (γ ، γ) معادلته هي

 $[\ r \] - 1 \] -$

٣- معادلة المستقيم الموازى لحور السينات ويمر بانقطة (٣،١) هي

3 - نقطة تقاطع المستقيمين ص σ ، س σ ، هي

[٥،١٠) أو (٣،٢) أو (٢،٣)]

(۲) أ- أب قطر في دائرة مركزها م إذا كانت أ = (7 , 7) ، م = (1 , 1) أوجد إحداثي النقطة ب ثم أوجد معادلة المماس للدائرة عند أ

- أو جد طول العمود الساقط من النقطة (۱ ، ٤) على المستقيم ٤س + ٣ص + ٥ = ٠

غير متو ازبين ثم أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين وبالنقطة (٥،٣)

ب- أوجد إحداثي النقطة جـ التي تقع في ربع المسافة من أ إلى ب حيث أ = (٢ ، ٣) ، ب = (٦ ، - ١)

(٤) أ ب جـ د مربع فيه أ = (٣ ، ٢) ، جـ = (-١ ، ٤) أوجد معادلة قطريه.

- ب – أو جد قياس الزاوية بين المستقيمين س – ٢ص + ١ = ٠ ، س + ٣ص + ٢ = ٠

المادة: هندسة

الزمن: ساعتان

امتحان الفصل الدراسي الأول

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

إدارة شرق الزقازيق التعليمية

مدرسة الزقازيق الثانوية بنين

 \cdot - أوجد قياس الزاوية بين المستقيمين س + ٣ص - ١ = ٠ ، س - ص + - + - +

- (٢) أ- أوجد طول العمود المرسوم من النقطة (٥ ، ٣) إلى الخط المستقيم الذي معادلته ٣س ٤ص + ٩ = ٠ ب أوجد : -1 معادلة هذا القطر . -1 ، ٥) وكان احد القطرين يوازى المستقيم : ٢س ٥ص ٣ أوجد : -1 معادلة هذا القطر .
 - ٢- إذا كانت إحداثيات رأسين من الشكل هما (٣- ، ١٠) ، (٩ ، ٩) فأوجد إحداثيات الرأسين للمعين.

(٣) أكمل ما يأتى:

-1 إذا كان المستقيمان ك س + ص + \vee = \cdot ، ك س + ك ص - 1 = \cdot متعامدان فإن ك =

-7 ميل المستقيم س + ٥ص + ٦ = ٠ هو

: عند الله عند الله عند الله عند الله عنه الله

 $\overline{-}$ منتصف أ $\overline{-}$

ب- ميل أب =

 \Longrightarrow ج- قياس الزاوية التي يصنعها \Longrightarrow مع الاتجاه الموجب لمحور السينات =

د- معادلة المستقيم المار بمنتصف أب ويمر بنقطة ج =

(٤) أ- أوجد معادلة المستقيم المار بالنقطة (٢،٤) وبنقطة تقاطع المستقيمين

 $\bullet = \lor -$ \longrightarrow \longrightarrow

ب- أب ج مثلث فيه أ = (٣ ، ٥) ، ب = (٧ ، ٤) ، ج = (١ ، ٢)

أوجد إحداثي نقطة د التي تقسم $\frac{\overline{}}{}$ من الداخل بنسبة $\overline{}$: $\overline{}$ ، ثم أوجد طول العمود من نقطة أعلى $\overline{}$ على $\overline{}$ ج

(٥) أ- اثبت أن المستقيمين ٢س - ٣ص + ٤ = ٠ ، ٣س + ٢ص = ٧ ، متقاطعان على التعامد ، ثم اوجد نقطة تقاطعهما ، ومعادلة المستقيم المار بنقطة التقاطع والنقطة (١،١)

ب- أوجد معادلة المستقيم الذي يقطع من محور السينات جزءا قدرة ٣ وحدات موجبة ومن محور الصادات ٥ وحدات سالبة.

المادة : هندسة تحليلية

امتحان الفصل الدراسي الأول

مدرسة الزقازيق الثانوية بنين

إدارة شرق الزقازيق التعليمية

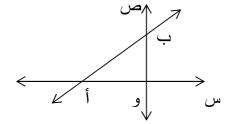
الزمن: ساعتان

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

(١) أكمل ما يأتي:

أ- المستقيم =
$$\frac{1}{7}$$
 س + ٣ يكون ميله

$$-$$
 قياس الزاوية بين المستقيمين س = π ، ص π = • يساوى


$$-$$
 المستقيم المار بالنقطة $(-7 , 0)$ ويوازى محور الصادات تكون معادلته $-$

$$c-deb$$
 العمود النازل من النقطة (T ، C) على المستقيم C یساوی

(٢) أ- أوجد قيمة ك إذا كانت الزاوية المحصورة بين المستقيمين:

$$m + b = 3$$
, $7 = 7 = 7 = 7$ $m + b = 7 = 7$

مع محور السينات.

(٣) في الشكل المقابل:

(٤) مستقيمان متوازيان احداهما يمر بالنقطة (-١ ، ١) وميله ٢ والثانى يمر بالنقطة (-٧ ، ٤) أوجد البعد بين المستقيمين.

- أ ب جـ مثلث حيث أ (٤ ، ٦) ، ب (٦ ، ٠) ، جـ (٢ ، ٠) أوجد احداثى نقطة م منتصف أ جـ ثم أوجد إحداثى نقطة د التى تجعل الشكل أ ب جـ د متوازى أضلاعه حيث د \in ب م.

المادة: هندسة تحليلية

امتحان الفصل الدراسي الأول

مدرسة الزقازيق الثانوية بنين

الزمن: ساعتان

الصف الأول الثانوي ٢٠١٩ - ٢٠١٠

(١) اختر الإجابة الصحيحة من بين القوسين:

إدارة شرق الزقازيق التعليمية

أ- المستقيم
$$\frac{\omega}{\sigma} + \frac{w}{\pi} = \Upsilon$$
 يصنع مع محورى الإحداثيات مثلثا مساحته = وحدة مربعة. (١٥ أو ٧٠ أو ٢٠ أو ٣٠)

ب- المستقيمان ص = صفر ، س = صفر

(متوازيان أ، متقاطعان في النقطة (٠ ، ٣) أ، متعامدان)

ج- الجزءان المقطوعان من محور السينات والصادات بالمستقيم ٥ س – ٢ ص = ١٠ هما [(0,7)],(7,0)],(7,-0)],(7,0)]

د – إذا كان النقطتان (۱ ، ٤) ، (-7 ، ك) تقعان على جانب و احد من المستقيم ٢ س – $-\infty$ + $-\infty$ + $-\infty$ فإن قيمة ك تكون [(ك > -١) أ، (ك < -١) أ، (ك \leq -١) أ، (ك > صفر)]

> (7) أ- إذا كانت أ = (7, -3) ، $\psi = (-7, 7, 7)$ ، $\psi = (1, 7)$ أ- إذا كانت أ أوجد إحداثيات نقطة ج.

ب- أوجد معادلة المستقيم العمودي على المستقيم المار بالنقطتين (١ ، ٢) ، (٢ ، - ١) ويقطع جزءا طوله ٧ وحدات من المحور الصادات السالب.

(٣) اوجد معادلة المستقيم المار بالنقطة (١،٥) وميله سالب والذي يصنع مع محوري الإحداثيات مثلثا مساحته عشر وحدات مربعة.

7ب المستقيم ل، : 7 س – 9 + 9 = ، يصنع زاوية جيب تمامها $\frac{7}{1}$ مع المستقيم ل، أوجد ميل المستقيم ل γ وإذا كان المستقيم ل γ يمر بالنقطة (١ ، -7) فما هي معادلته ؟

(٤) إذا كان المثلث أب جـ رؤوسه أ = (٠٠٠)، ب = (١،٠)، ج = (٢،٣) أوجد: أو لا : طول العمود من أعلى ب على ب حج \Leftrightarrow ثانيا : قياس الزاوية بين المستقيمين أب ، أ د حيث د منتصف + ج